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SUMMARY 
The present work is concerned with the numerical calculation of the turbulent flow field around the stern of 
ship models. The finite volume approximation is employed to solve the Reynolds equations in the physical 
domain using a body-fitted, locally orthogonal curvilinear co-ordinate system. The Reynolds stresses are 
modelled according to the standard k--E turbulence model. Various numerical schemes (i.e. hybrid, skew 
upwind and central differencing) are examined and grid dependence tests have been performed to compare 
calculated with experimental results. Moreover, a direct solution of the momentum equations within the 
near-wall region is tried to avoid the disadvantages of the wall function approach. Comparisons between 
calculations and measurements are made for two ship models, i.e. the SSPA and HSVA model. 
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INTRODUCTION 

The energy-saving demands in marine transport have increased the interest in designing ship 
forms with favourable resistance characteristics as well as in predicting more accurately the 
horsepower required to obtain the specified speed for a defined ship hull. So far, the calculation of 
the total resistance and the related propeller-engine selection for a known ship form have been 
based on semi-empirical methods which extrapolate model4scale experimental data (see e.g. 
Reference 1). The crucial assumptions made in these methods are essentially variants of the well 
known Froude hypothesis’ dividing the non-dimensional total resistance coefficient in two parts. 
The first part is the so-called wave-making resistance coefficient C,, which is the same for both 
model and full scale since the experiments are done at a Froude number equal to that of the real 
ship. The remaining part is the residual resistance coefficient C,, which includes the viscous effects 
(shear and pressure forces). Since the full-scale Reynolds number is about 10&1000 times higher 
than the model-scale value, there is a need to extrapolate the value of C, using assumptions which, 
more or less, oversimplify the problem. The disadvantage of such methods becomes serious when 
the total resistance is mainly due to viscous effects, which is the case for many types of merchant 
ships. On the other hand, the development of advanced computer codes dealing with the 
calculation of the flow around ships has produced encouraging results in many applications. As 
available computing power increases, their effectiveness becomes more and more promising and 
they have started to be considered as the alternative for making reliable full-scale resistance 
predictions. 

The numerical solution of the Navier-Stokes equations governing the flow field around a ship 
moving at steady forward speed is one of the most complicated problems of computational fluid 
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dynamics. The presence of the free surface, the locally unsteady propeller operation and the 
development of a thick boundary layer at the stern region introduce special difficulties and, till 
now, a solution method concerned with the complete problem has not appeared. So far, 
investigations have been focused on the independent treatment of each of the above aspects. 
Remarkable progress has been made towards the solution of the non-linear free surface problem 
(see e.g. Reference 3) and the calculation of the flow around a propeller (see e.g. Reference 4) in 
open water, using in both cases potential flow boundary element methods. Also, there are many 
methods, most of them recently devel~ped,~, which solve the time-averaged Reynolds equations 
around a ship’s stern neglecting the propeller action and the free surface effect. In the latter case it 
is assumed that the flow has a symmetry plane which coincides with the original water plane of 
the ship in the still condition (double hull). The above viscous flow methods are based mainly on 
finite difference-finite volume approximations and differ according to the co-ordinate system 
used, the solution method and the turbulence model. 

The most important uncertainty introduced when the Reynolds equations are solved is the 
application of a turbulence model. All the developed methods for stern flow calculations have 
used, up to now, simple mixing length and one- or two-equation isotropic eddy viscosity models, 
though their effectiveness is questionable. This is mainly due to numerical difficulties which had 
firstly to be faced, such as the velocity-pressure convergence procedure and the grid generation 
around the stern. Associated with the turbulence model is also the near-wall treatment. There are 
two methods which have been employed to calculate the flow variables near the solid boundary, 
i.e. the wall function method’ or the direct solution of the transport equations up to it.*-” The 
latter is certainly more accurate but is difficult to apply in the case of a high-Reynolds-number 
flow past a ship owing to the prohibitive numbers of required grid nodes. In contrast, the wall 
function method can be adopted without particular problems to calculate these flows and seems 
to be valid within a wide range of near-wall grid resolutions.” 

When comparisons are made between calculated and experimental results, it is essential to 
define to what extent existing differences are due either to the numerical or the turbulence 
modelling. There are, in general, two ways of testing the accuracy of a numerical method, i.e. the 
application of successively refined grids (grid dependence tests) or the employment of higher- 
order schemes to model terms of the discretized equations.” Since the effectiveness of both 
approaches depends mostly on the problem considered, one of the main objectives of the present 
work is to examine their influence on a numerical method used to solve the Reynolds equations 
around double-ship models. In addition, a direct solution of the momentum equations up to the 
solid boundary is undertaken in order to investigate if the results obtained by the wall functions 
can be improved. The described method, whose original versions have been reported in 
References 13-15, is based on the finite volume approximation. A body-fitted co-ordinate system 
is used to solve the transport equations in the physical domain and the Reynolds stresses are 
modelled according to the standard k-& turbulence model.’ Calculations are compared to 
measurements of velocity profiles, pressure and skin friction coefficients for different stern forms, 
i.e. the SSPA”. l8 and HSVAI9 models. A thorough experimental investigation has been carried 
out for both of them and well documented data are available in the open literature. 

NUMERICAL METHOD 

Co-ordinate system 

The transport equations describing the turbulent flow around the ship are solved numerically 
in a calculation domain which is covered by a numerical grid which is orthogonal curvilinear on 
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transverse  section^.'^ The grid nodes on a section are intersections of x2- and x3-co-ordinate lines 
as shown in Figure 1. In the third direction x1 the grid is non-orthogonal, since the geometry of 
the sections varies along the ship. Non-orthogonal grid lines on the water plane are shown in 
Figure 2. The flow variables refer to locally orthogonal curvilinear co-ordinate systems which 
coincide with the corresponding grids on transverse sections, while their third co-ordinate line is 
always parallel to the ship axis of symmetry. A sequence of local co-ordinate systems is therefore 
created corresponding to different transverse sections of the domain. The velocity components u2 
and u3 are parallel to the lines x2 and x3 respectively (Figure 1) and u1 is always normal to the 
section plane. 

The 2D orthogonal grid on a transverse section is generated by the conformal mapping 
method, transforming the section contour to a unit circle according to the method of von Kerczek 
and Tuck.20 The mapping function is 

N 

where z refers to the complex plane of the ship section and [ refers to the external domain of the 
unit circle. Coefficients a,,, n= 1, . . . , N, are calculated by an iterative process and the number N 
depends on the geometrical complexity of the section contour. Normal ship sections require 6-10 
coefficients for an accurate representation, while for complex contours (such as at a bulbous bow 
or stern) 5 M O  coefficients may be necessary. 

In transformation (1) it is assumed that two symmetry planes exist, i.e. the water plane and the 
longitudinal ship symmetry plane. If the section contour does not intersect these planes at right 

Figure 1. Orthogonal curvilinear grids on transverse sections 
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Figure 2. Grid on water plane 

angles, a Karman-Trefftz mapping” is firstly applied to transform the contour and then (1) is 
used. 

Once the coefficients of the transformation have been calculated for each ship section, 
orthogonal curvilinear grids on transverse planes can be obtained from the corresponding grids 
on the circle plane. The latter are formed as intersections of radii and concentric circles, which are 
defined according to the desired grid arrangement along the section contour and a normal to it. If, 
in addition to those originally given as data, some intermediate sections are needed to obtain finer 
resolution in the longitudinal direction, they can be easily produced by cubic interpolation 
among the transformation coefficients of the adjacent original sections. 

Govering transport equations 

are in cyclic permutation, the ui time-averaged momentum (Reynolds) equation  read^'^.^^ 
In a 3D orthogonal curvilinear system ( x i ,  x i ,  x I )  with metrices (hi ,  hi, hz), where indices i, j ,  I 

1 aaii 1 aa.. 1 aaiI 
h iaxi  hi ax j  h ,ax ,  

+ ~ i j ( 2 K i j +  Ki j )  + ~ii(2KiI+Kj,)+--+-?+--, 

where C(ui) shows the convection terms, i.e. 

+ d(hihIuiuj) d(hjhiuiuz)  + ax j  8x1 
(3) 

The stress sensor components on the right-hand side of (2) include both the viscous and the 
Reynolds stresses and are defined asz3 

and the curvature terms K i j  are expressed as 

1 ahi 
Ki j=- -  i#j. hi h axj ’ 
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If the co-ordinate lines (x,, x2, x3) of the adopted ship co-ordinate system correspond to 
(xi, x j ,  xl), the following simplifications are valid 

h ,  = 1, K, ,=K21  =K13=K31 =O, (6) 
since in each local orthogonal system the x,-direction is normal to the section plane. 

turbulence modelI6 as follows: 
The effective viscosity pe in expressions (4) is calculated according to the assumptions of the k-e 

pe = p + p, = p  + 0-09pk2/&,  (7) 
where p, is the isotropic eddy viscosity, p is the fluid viscosity, p is the fluid density, k is the 
turbulence kinetic energy and E is its dissipation rate. The values of k and E are determined bv 
solving two more differential equations, which in any orthogonal 
written in the form 

curvilinear system can be 

(8) 

where 

@ = k  or E, Ok= 1, a, = 1-3, 

& E2 

k k 
S,= 1 4 4 G - - 1 * 9 2 p - - ,  S,= G - PE, 

c is the mean velocity vector and the generation term G is expressed as 

G = 2p, [ e i  + e;j+ e i  +$(e$ + efl + ei)]. (9) 
It is usual in computational fluid mechanics to simplify the complete transport equations (2)  

and (8) whenever a velocity component is dominant along one direction of the flow field. If in the 
present case this direction is assumed to coincide with the co-ordinate axis x, (i.e. parallel to the 
ship symmetry axis), then the following approximations are often made. 

(a) a2@/a2x, = O  for every variable a. 
(b) Terms including du,/ax, and du2/dx1 are neglected in expressions of 031 and o ~ ~ .  
(c) Terms including 031 and crZ1 are neglected in the u2- and u3-momentum equations. 

The above simplifications, which have been widely used so far in the well known partially 
parabolic a p p r ~ a c h , ~ ~ . ’ ~  lead to the derivation of the higher-order parabolized-in-x, Reynolds 
equations. Since the corresponding numerical solution requires significantly less computer cost 
than the solution of the complete equations (being of elliptic type), results obtained by both 
methods are compared with experiments in the last section of this work. 

Discretized equations 

Following the finite volume approach,26 the general transport equations (2) and (8) can be 
integrated in a control volume surrounding the node P (Figure 3)  to obtain an algebriac equation 
of the form 

A p  @p = AN@N + Asas + AE @E + Aw@w + ADQD + A”@” + S, , (10) 
where the subscripts N (north), S (south), E (east), W (west), D (downstream) and U (upstream) 
refer to the neighbouring grid nodes of the central node P. The control volume of each variable is 
defined according to the staggered grid analysis. l4 
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Figure 3. Control volume 

The coefficients Ai,  i = N, S, E, W, D, U, on the right-hand side of equation (10) are functions of 
the variable @ and represent the combined effect of the convection and diffusion terms on the 
corresponding faces of the control volume. The integrated sum of these terms along the co- 
ordinate line j which intersects the i-face of the control volume is approximated as”. l4 

[ c (@) -D(@)] !=  cpi-riEi - (:I. 
where Ci is the total flux through the i-face, is the value of the variable defined on the 
intersection of the co-ordinate line and the face, Ti is the local diffusivity rate at the same location 
and Ei  is the projection of the face area normal to the j-co-ordinate line. 

The numerical approximation of coefficients Ai has been the subject of extensive research work, 
because they are directly related to numerical diffusion errors. The crucial point in all the 
developed methods is the approximation of the convection term in (1 l), since the application of 
higher-order schemes leads in many cases to ill-conditioned coefficient matrices or is unable to 
satisfy boundedness requirements’’ (this does not hold for diffusion terms which, usually 
approximated by central differencing, have a favourable contribution). Convergent and bounded 
solutions are obtained if the following strict condition holds: 

A lower-order approximation for the modelling of convection and diffusion terms which satisfies 
(12) is the hybrid scheme proposed by Spalding.?’ This scheme uses central or upwind differ- 
encing according to the local Peclet numbers, so that all coefficients Ai in equation (10) are non- 
negative. Although it leads to unconditionally convergent solutions, its application is advantage- 
ous with respect to accuracy whenever the mean velocity vector is aligned to the grid lines. 
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Obviously, it is difficult to fulfil this requirement in practical problems when complex geometries 
are examined. 

In order to test the effectiveness of the hybrid scheme in the present study, two more exact 
approximations are also examined. These are the skew upstream scheme28s29 and the classical 
central differencing ~ c h e m e ’ ~  used to model the convection terms in the longitudinal and 
transverse directions respectively. In any case, to retain conservativity between adjacent systems, 
the u2- and u3-velocity components on the upstream and downstream planes are transformed to 
the local co-ordinate system of central node P. 

Siew upwind differencing is based on the concept that convective transport occurs along 
streamlines and the value @” of any variable on the upstream face of the control volume shown in 
Figure 3 equals Q0, where o’j coincides with the local velocity vector. According to the first-order 
Taylor expansion, Q0 is approximated as 

a@ a@ 
ax, ax3 

x @u +- 6x2 + - 8x3. 

The partial derivatives in (13) are computed using the values of @ at the main nodes of the 
upstream system, depending on the location of ‘0’. For example, in the case of Figure 3 it is 

Application of (13) and (14) leads to expressions in 3D analysis equivalent to the 2D case.I4 If the 
same analysis is followed for the downstream face ‘d’, the combined effect of upstream and 
downstream convective terms becomes 

where C, and Cd are the fluxes through the upstream and downstream faces of the control volume 
respectively. If the terms in brackets are included in the sum of source terms of equation (lo), the 
conservative expressions (11) for A, and AD are written as 

Evidently, these expressions are derived under the assumption that no recirculation in the 
x,-direction exists, which is true for the flow around a conventional ship’s stern. If in some regions 
the u,-component takes negative values, the hybrid scheme is used to compute A, and A,. 
Although the computational cost increases remarkably, one should expect that with the introduc- 
tion of the skew-upwind system numerical diffusion in x1 will be reduced, since the co-ordinate 
systems vary along the ship axis. 

The central as well as the skew upstream differencing does not a priori satisfy condition (12) and 
boundedness requirements. However, it was found that, with the proper grid discretization in the 
longitudinal direction, they can be successfully applied without any convergence problems. This 
behaviour has been attributed to the high positive values of the u,-velocity component which 
characterize the flow field under consideration. 

Boundary conditions 

Boundary conditions for every variable @ have to be specified on each boundary of the 
calculation domain. At the inlet plane U (Figure 2), which is located almost amidships, the values 
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of the flow variables are calculated using experimental data. For the velocity components u1 and 
u3 it is assumed that the l/n power law is valid, i.e. 

where u, is the velocity at the edge of the boundary layer, 6 is the local boundary layer thickness, 
H1 is the shape factor and 0 is the cross-flow angle ( 0  = 0 at x, = 6). The values of 6, H,, and 0 
on grid points are calculated by linear interpolation among the corresponding experimental data. 
If the distribution of the experimental wall shear stress z, is also available at points around the 
inlet section, the velocity distribution in the near-wall region is calculated by the logarithmic law 
approximation, i.e. 

u3 1 -=-ln(Ey+ u1 1 cos ab), -- --ln(Ey+ sine,), 
4 K u, K 

where u, = ,/(t,/p), ic =0*42, E =9*79, y +  = u,x,/v and @b is the cross-flow angle at the point of 
intersection of the profiles defined by (17) and (18). The u,-component, being almost normal to the 
body surface, is computed using the linear relation u, = xZuZn/6, where u,,, is defined at x, = 6. 
The values of u, and u,,, as well as the velocity components on grid nodes out of the boundary 
layer are calculated from the potential flow solution around the actual body.30 The distributions 
of k and E at the inlet plane are estimated after the experimental data of Klebanoff3' and 
Bradshaw et aL3' respectively, scaled according to 6 and u,.13 

At the external boundary N the velocity components and the pressure are calculated by the 
potential flow solution and the normal derivatives of k and E are taken equal to zero. Normal 
derivatives on the two symmetry planes (i.e. the water plane and the ship symmetry plane) are also 
equal to zero for variables u l ,  u2, p ,  k and E, while for component u3 the Dirichlet condition u3 = 0 
is valid. 

At the outlet plane D of the calculation domain the flow is assumed to be fully developed. The 
values of the flow variables on this plane are set equal to those of the previous section of the 
domain, except for the pressure which is linearly extrapolated. 

Two methods are followed in this work in order to model the near-wall behaviour, resulting in 
application of different types of boundary conditions on the solid boundary S. The first of them is 
the wall function approach16 based on the assumption that the distribution of the velocity 
component parallel to the boundary follows the logarithmic law (17) for values of y +  ranging 
roughly between 40 and 100. Assuming also that the production of k is almost equal to its 
dissipation rate, a complete set of boundary conditions for u,, u3, k and E can be obtained and 
implicitly introduced in equation l6 Owing to the staggered non-orthogonal grid which is 
employed, there is not a simple way to apply the wall function approximation for the calculation 
of both the coefficient A, and the value of u, on the south face (through P in Figure 4) of the 
adjacent-to-the-wall control volume when the u,-momentum equation is solved. If the relative 
analysis is made according to the assumption that the velocity near the wall is parallel to it, the 
aforementioned values can be easily obtained using the logarithmic distribution. However, this 
assumption is not true, since the flow is strongly divergent in the thick boundary layer region of 
the stern and its application leads to unrealistic overestimation of the velocity profiles. Trying to 
overcome this problem, a parabolic fitting for u, has been adopted, using its values at x2=0 
(u, = 0) and at the adjacent-to-the-wall nodes. Comparative results with the two approximations 
are shown in Figure 5, where the calculated longitudinal ( V / U , )  and transverse (W/Ue) velocity 
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Figure 4. Near-wall treatment 

0 .5 1. 
Figure 5. Effect of u2 treatment (HSVA) 

profiles (as explained in the next section) are compared with measurements at a stern point of the 
HSVA model. It is evident that significantly better results are obtained using the parabolic fitting. 

To avoid the shortcomings of the wall function approach, the second method which has been 
examined is to solve the Reynolds equations up to the solid boundary. The solution is performed 
by subdividing the original adjacent-to-the-wall cells into a certain number of subcells as shown 
in Figure 4. The complete ul- and u,-momentum equations (2) are solved in these subcells 
(i.e. below NB) according to the general discretization form (10) and using boundary conditions 
u1 =u,=O on the wall. Following the fundamental concept of the parabolic shear layer (PSL) 
method of Iakovides and the third velocity component u2 is calculated explicitly from 
the integrated form of the continuity equation from the wall (u2 = 0) to the boundary NB. Since 
the pressure gradients in the +-direction are insignificant, simplified relations can be applied to 
determine the pressure in the subcell region. In the present investigation the pressure values 
between boundaries S and NB are assumed to vary linearly according to their values at points NP 
and P. The pressure at NP is calculated by the solution procedure described in the sequel, while 
its value at P is calculated inversely from the integrated form of the u,-momentum equation in the 
control volume which is defined by nodes P and NP. The adoption of this methodology 
(concerning the calculation of both the u,-component and the near-wall pressure values) is 
beneficial to achieve convergence as well as to obtain higher convergence rates than solving the 
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three momentum and the continuity equations up to the boundary. The latter presents many 
difficulties owing to the large aspect ratio values of the subcells, which have an unfavourable 
influence on the velocity-pressure coupling during the iterative solution procedure followed. 

The application of k-z model variants which include modifications for the near-wall turbulence 
structure has so far proved ~nsuccesfu1~~ to calculate adequately the flow quantities, even in 
simple 2D flows. This has been mainly attributed to the lack of physical information concerning 
the &-equation. This is why it was decided to use simplified empirical expressions for the 
determination of the eddy viscosity pUc in the inner (i.e. subcell) region. The latter is calculated after 
the mixing length35 approximation, i.e. 

~t = PL’ (dus/axn ) 3 (19) 

where x ,  is the normal distance from the body surface, us is the velocity component normal to x ,  
and L and denotes the mixing length given by 

L = K X ,  [l - exp (- x , / A L ) ] ,  (20) 

with the Van Driest damping factor A, calculated as 

A,  = 2 6 v ( ~ , / p ) ” ~ .  

The wall shear stress 2, equals p(du, /dx,)  at xn=O. The subcells are formed so that at least two 
grid nodes along x2 lie within the linear sublayer region, the latter defined by y +  <3. The 
k-equation (8) is also solved up to the solid boundary with boundary condition k=O on the wall. 
To take into account the near-wall effects, the quantity - 2v(dk/dxZ)’ is added to the source term 
of k according to the low-Reynolds-number model of Launder and Sharma.34 The calculation of k 
in the inner region is necessary to obtain boundary conditions for the solution in the outer region. 
The corresponding values of E are calculated inversely from (7), i.e. ~=0-09pk’/p~, so that 
compatibility in the two different expressions (7) and (19) is satisfied at the common boundary 
NB. Once the k-equation has been solved, the values of eddy viscosity pt in the inner region can 
alternatively be calculated by the one-equation k-L turbulence modeP as 

fit =0*09pJ(kL). (21) 

Comparisons between calculated results when expression (19) or (21) is used to define pt are also 
presented in the next section. 

For values of y+  higher than 100 the mixing length expression (19) becomes essentially equal 
to K X , .  According to simple boundary layer experiments, the adopted value for K is about 0.4. 
However, when this predetermined value was used, discontinuity problems appeared at the 
matching boundary NB of the inner and outer regions, mainly in the calculation of turbulence 
characteristics. This behaviour is shown in Figure 6, where the u,-velocity profile and the 
distribution of the effective viscosity pe are plotted with respect to the distance from the solid 
boundary at a stem point of the SSPA model. The dashed line corresponds to calculated results 
with K =0-4. Evidently, the velocity profile is smooth but the effective viscosity distribution is 
discontinuous at the matching boundary, where the function K X ,  predicts higher values of pt than 
those obtained by the k-& model in the outer region. This problem is eliminated if the factor K is 
calculated so that expressions (7) and (19) (or (21)) give the same value for pt at NP, i.e. 
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K CALCULATED 

K = 0.4 

4 

t t3 / / 

Figure 6. Near-wall velocity and effective viscosity distribution 

The above relation implies that K is a function depending on the local flow parameters and being 
constant only along a certain normal on the body surface. The results presented by the full line in 
Figure 6 show how the velocity and effective viscosity values are modified when K is calculated 
using (22). 

Solution procedure 

The dominant flow direction along the x,-axis, which governs the field under consideration, 
allows the application of the partially parabolic approach36 to solve the discretized transport 
equations (10). An initial guess for the pressure field, based on extrapolation of potential flow 
values at the external boundary, is made and then a marching solution is performed following 
successive transverse sections in the calculation domain. At a certain section the momentum 
equations are firstly solved and in the sequel the velocity components and the pressure are 
corrected to satisfy continuity according to the SIMPLE alg~ri thm. '~.~ '  Then the turbulence 
model equations are solved and the effective viscosities are updated. Calculation steps as above 
are repeated and, after convergence of local variables has been reached, the solution proceeds in 
the next sections until a sweep of the domain is completed. Experience has shown that a number 
of sweeps almost equal to the number of transverse sections is required to obtain overall 
convergence. Since the velocity field converges faster than the pressure field, the following relation 
is used as the convergence criterion: 

C'IAPIN 
CMIAPI' ' RES ( P )  < a, RES (P) = (23) 
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where M is the total number of grid points, AP is the pressure change at each grid point after the 
Nth sweep is completed and a is a constant. For the Reynolds numbers tested it has been found 
that when c1= 0.02, the maximum change of u,-component between two successive sweeps is 
below 0.1%. A typical curve showing the convergence rate of the normalized pressure residuals as 
a function of the number of sweeps is given in Figure 7. The corresponding calculations have been 
carried out for the HSVA model using 55 transverse sections with a 30 x 30 transverse node 
density. 

When the Reynolds equations are solved up to the solid boundary (as described previously), an 
internal iterative solution is furthermore required in order to obtain convergence within the 
subcell region. Then the calculated boundary values are used to solve the equations in the outer 
region in a single step and the same procedure is repeated until local convergence is achieved. 
This decoupling is advantageous since, to reduce the required computer cost, a relatively fast 
solution with the wall function method is firstly obtained and then the direct wall’simulation is 
applied using the original grid. Moreover, different solid boundaries (appendages) can be treated 
independently. 

Convergence of each transport equation is obtained using underrelaxation according to the 
following transformation of the original equation (10): 

where r is the underrelaxation factor, a0 is the old value of the variable @ and a,, is the updated 

TEST CASES 

As already mentioned in the Introduction, the SSPA” and HSVA” models have been used as 
test cases to evaluate the numerical calculations. Both of them were tested experimentally in wind 
tunnels but the measurements of the stern velocity profiles were taken using different techniques 
(hot wire for the SSPA and pitot tubes for the HSVA model). The body plans together with the 
locations of the aftermost measuring points on the body surface are shown in Figures 8(a) and 
8(b). Velocity measurements were taken along normals to the model surface directions starting 
from these points (11-15 for the SSPA and 18S185 for the HSVA model). The experimental 

1. t 

t 
.5 

Figure 7. Normalized pressure residual versus number of sweeps, N 



TURBULENT FLOW AROUND THE STERN OF SHIP MODELS 1191 

1 

Figure 8(a). Body plan of SSPA model Figure 8(b). Body plan of HSVA model 

results concerning the above measurements are presented as longitudinal (LI/U,) and transverse 
(W/U,) velocity profiles versus the non-dimensionalized normal distance y/6,  where 6 is the local 
boundary layer thickness. Longitudinal profiles are calculated as projections of the velocity 
vectors on the plane which is defined by the normal on the surface and the velocity U, at the edge 
of the boundary layer. Transverse velocity profiles are obtained as corresponding projections on 
the normal-to-U, plane and are positive towards the keel of the ship. Results for the skin friction 
coefficient C ,  = z,/$p U’, and the pressure coefficient C, = (P - P,)/$p LI: are also presented at 
the same locations as functions of the contour length (girth). Experiments were carried out at a 
Reynolds number equal to 5 x lo6 for the SSPA and 6.8 x lo6 for the HSVA model. 

The test cases for which calculations were performed are shown in Table I. These differ 
according to the numerical scheme employed, the grid density and the near-wall treatment (wall 
functions or direct solution). The first letter in the notation H-C, S-C,  etc. denotes the numerical 
scheme used to model the convection terms along the x,-direction, i.e. hybrid (H) or skew 
upwind (S). The second letter shows the scheme used in the transverse directions, i.e. hybrid (H) or 
central (C). In the notation N I  x N J  x NK used to specify the grid density, NI is the number of 
grid nodes around the girth of a section (x,-direction), N J  is the number of nodes along the 
normal (+-direction) and NK is the number of transverse sections. The inlet planes of the 
calculation domains were placed at x/L=Q.55 and x/L=Q-6 for the SSPA and HSVA models 
respectively (L is the model length and x is the longitudinal distance from the bow). At these 
sections experimental data necessary to calculate the input conditions are available. The 
corresponding exit planes were placed at x/L= 1-2 and x / L  = 1-4. In both cases the distance of the 
external boundary was at least three times the maximum measured boundary layer thickness, 
while the values of y +  in the adjacent-to-the-wall grid nodes ranged between 30 and 150. The 
input, exit and external boundaries were the same in every test. A special interpolation output 
programme was developed to calculate the velocity profiles at the experimental points, since the 
computed flow variables are stored in different locations. All computations were carried out on a 
SUN-330 SPARC station. 

Evaluation of numerical schemes 

Comparisons of the calculated velocity profiles, skin friction and pressure coefficients using 
various combinations of numerical schemes, i.e. central (C), hybrid (H) or skew upwind (S), are 
shown for the two models in Figures 9-13. The computations were carried out with a 32 x 30 x 45 



1192 G. D. TZABIRAS 

Table I. Test cases 

Numerical scheme Grid size NI x N J  x NK 

SSPA H-H (W.f.) 32 x 30 x 45 (w.f., direct) 
45 x 30 x 45 (w.f., direct) 
32 x 30 x 63 (w.f.) 

HSVA H-H (W.f.) 15 x 15 x 53 (w.f.) 
32 x 30 x 53 (w.f., direct) 
45 x 30 x 53 (w.f., direct) 

H-C 
S-H 

H-C 
s-c 

_ _ _ _ _ ~  - 

Wall treatment: w.L, wall functions; direct, up to the wall. 

Figure 9. Comparison of velocity profiles for SSPA model 

grid for the SSPA model and a 32 x 30 x 53 grid for the HSVA model. The wall function method 
has been adopted in any case. 

In Figure 9 the longitudinal and crosswise velocity profiles are compared with experimental 
values at points 11-15 of the SSPA model. Three numerical schemes are tested, i.e. H-H (solid 
lines), H-C and S-H (dashed lines). As observed, the three schemes show similar trends. The 
calculated longitudinal velocity profiles are in very good agreement with the measured values at 
points 11-13 and 15, while all computations overestimate the longitudinal velocity component in 
the near-wall region around points 19 and 9. These points are located in the region where the 
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most rapid changes of the stern geometry occur. It should be noticed here that the dashed 
horizontal line shows the position of the first near-wall node and the profiles below this line are 
extrapolated according to the logarithmic wall law. The H-C scheme seems to have the better 
behaviour with respect to the measurements, implying that the adoption of a higher-order scheme 
in the transverse directions is more important than improving the upstream convective terms. 
The agreement between the calculated and experimental crosswise velocity profiles is very good 
at all points, whether the corresponding components change sign in the normal direction 
(e.g. point 12) or not. This is crucial for the prediction of the longitudinal vortex formation which 
influences the resistance and propulsion characteristics of a ship. Corresponding comparisons for 
the HSVA model are shown in Figure 10, where the H-H, H-C and S-C schemes are tested. The 
calculated longitudinal and crosswise profiles at points 180 and 181, lying in the keel region, are in 
very good agreement with the measured values. Differences are again observed at point 182, 
where the computed longitudinal profiles have higher values than the experimental ones, while at 
point 183 the velocity components are underpredicted with respect to experiments for y / b  <0.2. 
In this region the measured longitudinal profile presents an inflection point associated with high 
positive values of crosswise components. Similar behaviour but with less intense differences is 
observed at point 184, while calculations are in good agreement with experiments at point 185 
which is located near the water plane. The H-C scheme again produces the best results, whereas 
with the adoption of central differences the S-C combination is relatively improved. However, the 
differences among the calculated profiles are still of minor importance. 

H/Ue U/Ue 

Po 181 

i 

- 
I -  1 

5 -1 
I .5 1. .5 1. 

Figure 10. Comparison of velocity profiles for HSVA model 
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Comparisons of the skin friction coefficient C, for the SSPA model are shown in Figure 11. The 
numerical schemes tested give practically the same results, which are in satisfactory agreement 
with the experimental data, the latter being deduced from the measured velocity profiles. This is 
not the case for the HSVA stern section, where the rapid variation of the stern geometry causes 
steep changes of the flow parameters girthwise as shown in the experimental results of Figure 12. 
The experimental C,-values have been either directly measured (Preston tubes) or implicitly 
derived from the velocity profiles (Clauser or Ludwieg-Tillman method). The calculated results, 
slightly improved by the application of the S-C scheme, tend to underestimate the skin friction 
values in the region of points 183 and 184, i.e. where a velocity defect is observed in the calculated 
longitudinal profiles (Figure 10). In contrast, the predicted pressure coefficient C, is in good 
agreement with the measurements as shown in Figure 13. Also, it is evident from Figure 13 that the 
potential flow solution fails to predict adequately the pressure field around the stern (related 
C,-comparisons are not given here for the SSPA model because the experimental results are 
influenced by blockage effects). The large opposite-sign pressure gradients existing around the 
minimum of the C,-curve near the keel imply a concentration of the flow lines in this region, 
which is combined with a maximum in the C,-curve (Figure 12). 

The comparisons made in Figures 9-13 indicate that the application of the skew upwind 
scheme in the x,-direction has not yielded noticeably or systematically better results than the 
hybrid scheme. This behaviour implies that the changes in the longitudinal direction of transverse 
derivatives of any variable CD are less important than the changes in @ itself, owing to the 
dominance of the u ,-component combined with the adopted smoothly varying body-fitted grid. 

-t--- Y GIRTH 

Calcu la t ions  : H-H scheme 
Calcu la t ions  : H-C scheme 
Calcu la t ions  : S-H scheme 

Figure 11. Comparison of C,-values (SSPA) 

* Measurements 

- - - -. -------- 
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Figure 12. Comparison of C,-values (HSVA) 
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Thus the term in brackets in relation (15) is of minor importance compared with the convective 
terms of the classical upstream scheme, resulting essentially in the same values for coefficients A ,  
and AD. 

Grid dependence tests 

Using the H-C scheme and the wall function method, comparative calculations with various 
grid sizes have been performed for the two models. The effect of the longitudinal grid refinement, 
i.e. the number of transverse sections used, has been examined for the SSPA model. Two runs 
were carried out corresponding to a 32 x 30 x 45 and a 32 x 30 x 63 grid. In the second case 18 
more transverse sections were interpolated at the stem region. The results for the velocity profiles 
have shown only slight improvements with the finer grid. The same trends have been observed 
when two different girthwise grid densities were compared having respectively 45 x 30 x 45 and 
32 x 30 x 45 nodes. The improvement with the finer grid in this case, occurring near the wall at 
points 13 and 15, was found to be negligible. 

The effect of the transverse grid refinement on the calculated results has also been examined for 
the HSVA model. Three grid sizes, i.e. 45 x 30 x 53, 32 x 30 x 53 and 15 x 15 x 53, were tested. 
Remarkably better results were obtained with the 32 x 30 grid than with the coarse 15 x 15 grid. 
However, the calculated results did not seem to improve significantly with further girthwise grid 
refinement concentrated in a region surrounding points 182-184. This behaviour is observed in 
Figure 14, where the calculated C,-values are compared with measurements. 

o Preston 
* Claussr 
x Ludwisg-Tillmann 

1 X GIRTH 

Calculations : 4 5 x 3 8  grtd (H-C soh.) - - - -. Calculations : 3 2 x 3 8  grid 
-------- Calculations : 15x15 grid 

Figure 14. Comparison of C,-values (HSVA) 

o Measurements 
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Calculations with parabolized equations 

Calculations performed using the parabolized-in-x, transport equations are compared with 
those obtained by the complete equations in Figures 15-17. The H-C scheme has been employed 
and the grids tested had 32 x 30 x 45 nodes for the SSPA and 32 x 30 x 53 for the HSVA model. It 
is clear from Figure 15 that the solution of the complete equations gives better results in 
comparison to the measured velocity profiles of the SSPA model. The differences between the two 
solutions are more pronounced in Figure 16 for the HSVA model, especially around the upper 
half of the section (i.e. at points 183-185). In this case there is a systematic trend of the parabolized 
solution to predict lower values of the velocity, which is also implied in Figure 17 where the skin 
friction is plotted. 

Numerical experiments have indicated that the differences between the two methods are due 
partly to the original assumptions made to derive the parabolized equations and partly to their 
numerical treatment (the numerical analysis has been based on the strict parabolic form, i.e. the 
downstream values of different values are assumed to be equal to those calculated at the running 
section). The application of a certain numerical scheme also seems to affect the related com- 
parisons, since previous corn par is on^^^ have shown that using the H-H scheme, the above 
differences are decreased. 

Effect of near-wall treatment 

In order to compare the results obtained with the wall function method, additional com- 
putations were carried out for both models solving the Reynolds equations up to the solid 

Figure 15. Comparison of velocity profiles for SSPA model 
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Figure 16. Comparison of velocity profiles for HSVA model 
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Figure 17. Comparison of C,-values (HSVA) 
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boundary, as previously described. The original adjacent to-the-wall cells were subdivided into 
20 subcells, resulting in effective transverse grid sizes of 32 x 50 nodes. In all calculations the 
H-C scheme was used. 

Calculated velocity profiles using the direct near-wall treatment for the SSPA model are 
compared with experimental values in Figure 18. Calculations correspond to three different 
approximations of the eddy viscosity in the near-wall region, i.e. the zero-equation (or mixing 
length) model (19) with an implicitly calculated Ic-factor (equation (22)), the one-equation model 
(21) where K is again calculated and the zero-equation model using a constant value for ~c equal to 
0.4. It is clear that in the first two cases significantly better results have been obtained at points 19 
and 9. Moreover, no substantial differences are observed between the calculations made with the 
zero- or one-equation model with adjustable Ic-factor. With all approximations tested there is still 
a tendency to overestimate the longitudinal velocity profile near the solid boundary around 
point 9. The same trends are shown in Figure 19, where comparative tests are made for the HSVA 
model. It is obvious that the use of variable Ic-values leads to systematically better predictions, but 
the differences between calculations and measurements at points 182-1 84 remain. Further 
girthwise grid refinement results in unimportant improvements, as has been observed by 
comparing the 32 x 50 grid with a finer grid having 45 x 50 nodes. 

Calculated values of the skin friction coefficient obtained by the up-to-the-wall solution are 
compared with measurements of the HSVA model in Figure 20. Computations were carried out 
using the zero-equation model with adjustable Ic-factor. The solid line shown in this figure 
corresponds to C, calculated on the solid boundary, i.e. within the linear sublayer. The dashed 

Figure 18. Effect of near-wall treatment on velocity profiles (SSPA) 
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Figure 19. Effect of near-wall treatment on velocity profiles (HSVA) 
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Figure 20. Comparison of C,-values (HSVA) 
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line shows the C,-values derived from shear stress calculations at the centres of the original 
boundary cells, where the wall function approximations are assumed to hold. Two remarkable 
conclusions can be drawn. Firstly, there is a substantial difference between the values of the two 
curves, indicating that the shear stress along the normal to the wall is varying. The wall function 
approach is based on the assumption that this stress is constant. Secondly, the direct CF 
measurements, made by Preston tubes of 1 mm diameter, are located (with a small deviation near 
point 182, i.e. at 26% of girth) within the range defined by the two curves. This is also valid in 
general for the experimental C, derived from the velocity profiles. It must be noticed here that 
even the direct measurements of C ,  suffer from experimental uncertainties, since the size of a 
Preston tube influences the flow field around it. The same trends have been observed for the stern 
section of the SSPA model. 

Finally, in Figure 21 comparative results of C, are plotted around the HSVA section using the 
three near-wall turbulence models. Excellent agreement between calculations and experimental 
values is observed in the two cases which calculate K-factors. Also, comparing Figures 13 and 21, 
the above predictions are better than those obtained with wall functions. In contrast, when K is 
assumed to be constant, the calculated C,-curve is not in close agreement with the measurements. 

The numerical tests described in this section, concerning either the application of different 
numerical schemes and grid resolutions or different near-wall treatments, imply that the differ- 
ences observed between the calculated and measured velocity profiles are due to the shortcomings 
of the turbulence model employed. These differences are of two kinds according to the trends of 
the numerical solutions presented in Figures 9-21. The first kind of difference is associated with 

t n 

-.4 l o  o Cp pot.tHess and Smith) 
* Cp experimental 

25 5-0 ?3 
X GIRTH 

Zero eq. K calc. (Direct wall) 
One cq. K calc. 
Zero eq. K 4 . 4  

- - - -. -------- 
Figure 21. Comparison of C,-values (HSVA) 
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the overprediction of the longitudinal velocity components near the solid boundary at stern 
points where the longitudinal curvature is large, such as points 9 and 19 of the SSPA or point 182 
of the HSVA model. Quite similar trends for the SSPA model have been recently presented by 
Chen et using a different numerical method based on the finite analytic approximation. This 
is a well known behaviour of the k-& model, occurring even in the case of simple axisymmetric 
stern Comparisons between calculated and experimental Reynolds stressesl4> 39 show 
that the model tends to overestimate the Reynolds stresses near the body surface, resulting in an 
increase of the velocity components. The second kind of difference is observed near point 183 of 
the HSVA model, where the experimental longitudinal velocity profile shows an inflection point. 
Unfortunately, there are no turbulence measurements to be compared with calculated values, but 
it is expected that the smooth variation of the turbulence characteristics predicted by the k-e 
model cannot produce velocity profiles of the above type. 

Despite the aforementioned problems associated with the turbulence model, it must be kept in 
mind that the main interest in ship hydrodynamics is the flow calculation at high Reynolds 
numbers (- lo9). Existing experiments4' indicate that the longitudinal velocity profiles at these 
Reynolds numbers become typical boundary-layer-type profiles, which has also been verified by 
numerical tests.' ' Moreover, the propeller action has an accelerating effect in the stem region 
where the lower values of the longitudinal components are Consequently, the 
application of the k-e turbulence model may be more effective when the real problem is faced. 
Unfortunately, the latter can be established only by comparisons with experiments at full scale, 
which are difficult to carry out. 

CONCLUDING REMARKS 

Various numerical tests have been performed using different finite volume approximations and 
near-wall models to calculate the stern flow past two double-ship hulls. According to the 
presented comparisons with existing experimental data, the following conslusions can be drawn. 

1. The application of central differencing on transverse-to-the ship axis directions leads to 
better predictions than the hybrid scheme. In contrast, the use of skew upwind differencing 
in the longitudinal direction produces almost the same results as the hybrid scheme. 

2. The calculated results when the complete equations are solved are in some cases in 
substantially better agreement with the measurements than those obtained by the para- 
bolized equations. 

3. The direct solution of the Reynolds equations in the near-wall region is almost insensitive to 
the turbulence models which have been employed (i.e. the simple mixing length or the one- 
equation k-L model). The corresponding results are drastically affected by the treatment of 
the proportion factor K of the mixing length formula. If the latter is implicitly calculated to 
match with the outer solution, remarkable improvement in the calculated values is obtained. 

4. The comparisons of the calculated velocity profiles using either the wall function method or 
the direct solution of the Reynolds equations up to the wall show similar trends. However, 
quite different results are obtained for the skin friction coefficient C,. 

5. The application of the k-& turbulence model seems to be responsible for some discrepancies 
observed between calculated and experimental velocity profiles, especially at the stern 
region where rapid changes in the geometry occur. However, further numerical as well as 
experimental work is needed to validate the model in the case of a high-Reynolds-number 
flow past a ship. 
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